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Cédex 05, France
§ Paul-Drude-Institut f̈ur Festk̈orperelektronik, Hausvogteiplatz 5–7, 10117-Berlin, Germany

Received 18 July 1997, in final form 29 January 1998

Abstract. Experiments showing the effects of uniaxial stress on the structure of the zero-
phonon line (ZPL) obtained in the optical absorption spectrum from a Ti3+ ion in GaP are
described and interpreted using a new theoretical model. It is found that the components of
the ZPL are split when the stress is applied along the〈001〉, 〈111〉 and 〈110〉 axes. These
results together with the spectra observed without applied stress, show that previous energy
level diagrams for this centre cannot be correct. A vibronic model is used to describe this
system which includes coupling to e modes in the2E ground states, to both e and t2 modes
in the excited2T2 excited states and to t2 modes between2E and 2T2. The model is shown
also to give a good explanation of the published Zeeman data obtained from photoluminescence
measurements as well as the new uniaxial stress data presented here. A brief discussion is given
of the type of Jahn–Teller effect operational in this system emphasizing that it is not necessarily
of the orthorhombic T⊗ (e+ t2) type in the excited state.

1. Introduction

Impurities continue to play a dominant rôle in the search for superior materials for use as
electronic and optoelectronic devices. One of the simplest impurities to understand would
appear to be titanium in the Ti3+ form when it substitutes for a host atom, as it contains
a single 3d electron localized around the impurity centre. However, this is clearly not
the case as demonstrated from the conflicting models which have been presented in the
literature for the Ti3+ impurity in the III–V semiconductors GaAs, GaP and InP over the
last ten years. During this period, a variety of experimental techniques have been used in
attempts to elucidate the facts but their interpretation is hindered by the lack of adequate
theory to explain some of the observed properties. The aim of this paper is to describe
some new experiments undertaken on the GaP:Ti3+ system and some advancements in the
theory which together enable a satisfactory model to be obtained for this system. The results
obtained clearly show the need to be careful in attributions of particular properties of defects
in device material to specific impurities.

It has been established that the Ti ion substitutes for the III site in the three hosts
mentioned above and that it forms both a deep donor Ti3+/Ti4+ level and a deep acceptor
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Ti2+/Ti3+ level within the band gap [1–9] in both GaAs and GaP. By carefully controlling
the other impurities, it has been possible to isolate those properties associated with Ti3+

ions alone. In a tetrahedral environment arising from the four nearest-neighbour arsenic or
phosphorus atoms, the Ti3+ impurity has a2E ground state and a2T2 excited state. It can
thus be investigated spectroscopically.

Electron paramagnetic resonance (EPR) experiments on Ti3+ in GaP [10, 11] and in
GaAs [12] have suggested that the orbital doublet (2E) ground state undergoes a weak-to-
medium E⊗ e Jahn–Teller (JT) coupling. This is inferred by a line-shape analysis of the
broad EPR line at low temperatures with the Huang–Rhys factorSe ≈ 2. Information on the
excited2T2 state is available from different optical absorption (OA) and photoluminescence
(PL) experiments which involve also the ground state. At low temperatures, the OA spectra
in GaAs and InP are characterized by two sharp peaks of the2E–2T2 zero-phonon line (ZPL)
located at 4565.5 cm−1 and 4589.4 cm−1 in GaAs [1, 7, 14–16] and at 4409.4 cm−1 and
4437.0 cm−1 in InP [1, 7, 15]. In GaP, the same features have been observed; however,
the first peak was found to be split into two components located at 4873.0 cm−1 and
4876.3 cm−1 [17]. Also, the second peak, at 4903.0 cm−1, has a full width at half-
maximum (FWHM) which is an order of magnitude (≈8 cm−1) larger than that of the
two components of the first peak. Similarly, it has also been noted that the second peaks
of the OA spectra in the cases of GaAs and InP hosts are also again much wider than
the corresponding first peaks in these hosts. These measurements clearly suggest that the
nature of the electronic transitions associated with the first and second peaks in all three
hosts are different. Additional information has been obtained from studies of the effects of
a magnetic field; Zeeman experiments have been carried out on the first peak by PL in GaP
[18] and by OA in both GaAs [14] and InP [15].

Agreement on the origin of the peaks in the ZPLs in all three hosts appeared to have
been reached in the papers cited above including the important characteristic that one of the
observed Zeeman lines in GaP:Ti3+ was virtually field independent. The two absorption lines
were assigned to the transitions from the08(

2E) ground state to the08 and07 components
of the 2T2 excited state which are separated by an amount 3Kλ/2 from the spin–orbit
interaction whereλ is the free-ion spin–orbit coupling constant (159 cm−1) and the factor
K is equal to unity in a crystal-field model. However, the measured value (28 cm−1) of the
splitting of the excited state in all three hosts was found to be much smaller than the value
of 3λ/2 (231 cm−1). This difference was explained by takingK = 0.12 and attributing
the origin of the quenching of the spin–orbit interaction to the Jahn–Teller (JT) effect. The
smaller splitting of 3.3 cm−1 observed in the first two peaks in GaP was explained by the
presence of a non-cubic distortion, although its origin remained unclarified [18].

Meanwhile, Zeeman experiments on the OA ZPLs in InP:Ti3+ [15] gave results which
conflicted with this model. Instead, the measurements suggested that the second (broader)
peak was unlikely to correspond to the08(

2E)→ 07(
2T2) transition. Furthermore, the value

of 0.12 deduced above forK is an order of magnitude larger than that usually associated
with deep-level impurity ions in III–V semiconductors (see [19], for example).

In order to clarify the details of the simultaneous action of spin–orbit coupling and the
vibronic coupling on the excited2T2 state in such systems, the behaviour of the absorption
lines under uniaxial stress has been investigated for one of the hosts. This paper describes
such experiments carried out on the GaP:Ti3+ system. It is shown that the results require a
reinterpretation of the assignment of the Ti3+-related absorption lines for this system. A new
theoretical model is developed which takes into account both the spin–orbit coupling and the
vibronic coupling of the T2 orbital excited states to the e and t2 modes (including second-
order JT effects) as well as ‘strain’-like effects. This model in which the splitting within
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the excited2T2 vibronic states is much less than the value of 28 cm−1 quoted above will
be shown to give a good description of the stress-induced shifts, splittings and polarization
behaviour of the absorption lines. Thus 3λ/2 is no longer taken to be 28 cm−1; instead, the
latter level is taken to be the first excited vibronic level of the system.

Figure 1. Absorption spectrum of GaP:Ti measured atT = 6 K. The numbers indicate the
2E→ 2T2 transitions of Ti3+Ga according to the energy level scheme of figure 4.

Table 1. The relative strengths of the absorption lines 1 to 6 as described in the spectra of
figures 2 and 3. Key:×: line present;⊗: line present but weaker (<20%); 4: line weak
(<20%) in both polarizations;◦: line absent;E: electric vector of the absorbed light;σ:
pressure.

1 2 3 4 5 6

σ‖〈001〉 E‖σ ⊗ × ◦ ◦ × 4
E⊥σ × × × × ◦ 4

σ‖〈111〉 E‖σ × × × × ◦ ◦
E⊥σ × × × × × ×

The reassignment of the level at 28 cm−1 is the fundamental difference between existing
models of this centre and that described here. As stated above, the reasons for this change
are based on the differences between theexperimentally observedlinewidths and shapes
of the observed transitions under zero stress. A second and perhaps even more important
experimental factor is that the observed splittings of the first peak of the ZPL generated by
uniaxial stress cannot be explained with existing models as six components are seen rather
than the four which would arise according to existing models. A vibronic level at 28 cm−1

is not unexpected on physical grounds. It could be typically an inversion level in a strongly
coupled JT ion or another vibronic level containing one-phonon excitation; it is impossible
to be more definitive than this at the present time. However, the origin is unimportant for
setting up a model.
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In addition to providing an acceptable explanation of the stress data, the model will
be shown also to give a consistent reinterpretation of the earlier Zeeman experiments on
the lines in PL. Although details are not given in this paper, the same basic model can be
shown to account for the observed properties of the Ti3+ ion in GaAs and InP (although
obviously the values of the parameters will be different).

Finally, as the Ti3+ ion is the simplest of the transition metal impurity ions, it provides
an ideal system in which to study the JT effect when both e and t2 couplings are present.

Figure 2. The transmission spectra due to the2E → 2T2 transitions 1 to 6 (see figure 4)
of GaP:Ti3+ measured atT = 6 K with uniaxial stressσ along 〈001〉 (resolution 0.2 cm−1).
(a) Measured with unpolarized light, (b) measured with polarized light and the electric fieldE
of the absorbed light perpendicular to the stress directionσ, (c) measured with polarized light
andE parallel toσ.

2. Experimental details and results

The titanium-doped GaP samples investigated were taken from the same LEC-grown boule
as was used in earlier investigations; they are n-type semi-insulating with the Fermi level
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Figure 3. The transmission spectra due to the2E → 2T2 transitions 1 to 6 (see figure 4)
of GaP:Ti3+ measured atT = 6 K with uniaxial stressσ along 〈111〉 (resolution 0.2 cm−1).
(a) Measured with unpolarized light, (b) measured with polarized light and the electric fieldE
of the absorbed light perpendicular to the stress directionσ, (c) measured with polarized light
andE parallel toσ.

pinned by the Ti2+Ga/Ti3+Ga level atEc − 0.5 eV (E1 samples; cf. [17]). For measuring the
OA, three samples were each cut with dimensions 10×4×2 mm3 but with the 10 mm axes
parallel to either the〈001〉, 〈111〉 or 〈110〉 directions respectively. The 10× 2 mm2 faces
were polished so that the absorbing thickness was 4 mm. The OA was measured by
Fourier-transform spectroscopy using a BOMEM DA 3.01 interferometer equipped with a
cooled InSb detector and a CaF2 beam splitter. The resolution in all of the experiments was
0.2 cm−1. The samples were mounted in an uniaxial compressive stress system inserted into
an Oxford Instruments CF 204 continuous-flow cryostat. The experiments were performed
at temperatures close to 6 K.

Figure 1 shows the absorption spectrum of GaP:Ti in the region of the known two sharp
peaks at 4873 cm−1 and 4876.3 cm−1 arising from the2E→ 2T2 transition of Ti3+. This
spectrum measured with this high resolution and without applied stress, reveals that the
ZPLs at 4873 cm−1 and 4876 cm−1 consist at least of three and two lines respectively. The
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Figure 4. The energy level scheme of Ti3+
Ga in GaP in zero applied uniaxial stress. The arrows

marked by 1 to 6 indicate the optical absorption transitions seen in the spectra of figures 1 to 3.

broad underlying absorption seen in figure 1 is due to the3A2→ 3T1 transition of the Ti2+

ion which is also present in the samples (cf. figure 2 in [17]).
The shifts and splittings of the absorption lines shown in figure 1 under uniaxial stress

σ , with σ having values up to 100 MPa, have been investigated forσ along 〈001〉, 〈111〉
and 〈110〉 successively. Parts (a) of figure 2 and figure 3 show the spectra measured with
unpolarized light and the stress applied along〈001〉 and 〈111〉 respectively. Parts (b) and
(c) of figure 2 and figure 3 show the spectra measured with polarized light where parts (b)
are the spectra for the electric fieldE of the absorbed light perpendicular toσ and parts (c)
for E parallel toσ. As can be seen, quite pronounced polarization effects occur for both
stress directions. The relative intensities of the transitions are summarized in table 1.

The spectra measured under stress clearly indicate that a total of six absorption lines
exist. Analysing the positions of the lines at zero and low stresses, the schematic energy
level scheme shown in figure 4 has been derived to describe the electronic2E → 2T2

transitions within a Ti3+Ga ion. These transitions are labelled by 1 to 6 in figure 4. In
particular, this level scheme, which is totally different from that usually assumed in the
literature (see references [1–17]), shows that:

(i) the spin–orbit splitting of the2T2 excited state into the08 and07 states amounts to
only 3.3 cm−1, and

(ii) both the08(
2E) ground state and the08(

2T2) excited state are already split at zero
stress by about 0.4 cm−1.

The almost equal splitting of the two08 states implies that transitions 1 and 4 are at the
same energy at zero stress, so only five lines can actually be observed (see figure 1). The
observation of all six lines in high stresses shows that the broader line at 4903 cm−1 is not
a purely electronic transition but more probably vibronic in nature.

Figures 5 to 7 show the dependence of the positions of the absorption lines 1 to 6 on
the uniaxial stress applied along the directions〈001〉, 〈111〉 and〈110〉 respectively. As can
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Figure 5. The effects of uniaxial stress on the absorption lines 1 to 6 for GaP:Ti3+ for σ
applied along the〈001〉 direction. The diamonds are the measured line positions with1E = 0
at 4873.0 cm−1. The curves are fits to the Jahn–Teller model with the parameters given in
section 4.

Figure 6. The effects of uniaxial stress on the absorption lines 1 to 6 for GaP:Ti3+ for σ
applied along the〈111〉 direction. The diamonds are the measured line positions with1E = 0
at 4873.0 cm−1. The curves are fits to the Jahn–Teller model with the parameters given in
section 4.

be seen, the effect of stress is much larger forσ along〈001〉 compared withσ along〈111〉
but that it is also significant forσ along〈110〉.

For comparison, figure 8 shows the absorption line at 4565.5 cm−1 due to the2E→ 2T2

transition of Ti3+Ga in GaAs measured with high resolution on a sample investigated previously
[14]. Obviously this line consists of two components separated by∼0.2 cm−1. This result
suggests that the spin–orbit splitting of the2T2 state amounts to only 0.2 cm−1 in GaAs:Ti3+

and that the08 states are not split without an external perturbation. It is therefore assumed
that the second peak in GaAs and InP is also vibronic in nature. Thus a more detailed
analysis of these systems is required, taking the JT effect into account in a general way.
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Figure 7. The effects of uniaxial stress on the absorption lines 1 to 6 for GaP:Ti3+ for σ
applied along the〈110〉 direction. The diamonds are the measured line positions with1E = 0
at 4873.0 cm−1. The curves are fits to the Jahn–Teller model with the parameters given in
section 4.

Figure 8. The optical absorption spectrum of GaAs:Ti measured atT = 6 K with a resolution
of 0.05 cm−1 in the region of the zero-phonon line at 4565.5 cm−1. The two partly resolved
lines (separation 0.19 cm−1) are due to the2E→ 2T2 transition of Ti3+Ga with the 2T2 state split
into the08 and07 components. The weak shoulders on the wings of these lines are caused
by the isotope effect of46Ti (7.9%), 47Ti (7.3%), 49Ti (5.5%) and50Ti (5.3%); the numbers in
brackets are the natural abundances.

3. The Jahn–Teller model for Ti3+ in GaP

3.1. The Jahn–Teller effect

It is usual to simplify the description of the lattice by replacing it by a cluster which
consists of the paramagnetic ion and its nearest neighbours only. This is known as the
cluster model. We assume that the largest perturbation is the crystal field followed by the
ion–lattice interactionHint . Only e modes can be coupled to the orbital doublet but the
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orbital triplet can couple to the e- and two t2-type vibrations. From a theoretical point of
view, it is impossible to say which of the e- and two t2-type vibrations are more strongly
coupled in the orbital triplet. However, from the above uniaxial stress experiments, it
appears that tetragonal (e) uniaxial stress has the main effect on the2T2 state but also that
trigonal (t2) uniaxial stress does have an effect, so we must infer that both the e- and t2-mode
couplings are significant without the system being necessarily orthorhombic. The influence
of the coupling to t2 modes of the2T2 is also revealed by the triple-peaked line-shape of
the broad2E→ 2T2 absorption band observed for all three hosts (see figures 2 and 3 in [1]
and figure 3 in [10]). The structure due to the various titanium isotopes observed in figure
8 confirms, in the case of GaAs, the importance of the coupling to t2 modes as e modes
do not induce a motion of the titanium ions. It seems appropriate, therefore, to model the
orbital triplet by an effective Hamiltonian which allows for coupling to the e and the two
t2 modes without any other restriction.

The Hamiltonian for the2T2 orbital triplet of the Ti3+ ion at a site of symmetry Td can
be written as

H = EO +Hint +Hcluster+ V (3.1)

whereEO is the energy of the orbital triplet,Hcluster is the total elastic and kinetic energy
of the cluster andV represents any perturbations such as spin–orbit coupling, the Zeeman
term, the stress/strain etc. The vibronic couplingHint is assumed to have the form

Hint = VE(QθEθ +QεEε)+ VT(Q4Tyz +Q5Tzx +Q6Txy)

+V2(Q7Tyz +Q8Tzx +Q9Txy) (3.2)

where VE, VT and V2 are the coupling constant for the e-type and the two t2-type
displacements respectively.Eθ , Eε andTxy are orbital operators such that

Eθ = 1
2[3l2z − l(l + 1)] Eε = 1

4

√
3(l2+ + l2−) Txy = 1

2

√
3(lxly + ly lx)

etc, where the orbital operators are written in terms of an isomorphic operatorl = 1 and
Oz is along one of the twofold〈001〉 axes of the tetrahedral cluster [20].

For the2E orbital doublet, modelled by an isomorphic orbital operatorT = 1
2, equations

(3.1) and (3.2) apply but with the orbital operators defined by [20]

Eθ = T1 = 1
2(|θ〉〈θ | − |ε〉〈ε|)

Eε = T2 = − 1
2(|θ〉〈ε| − |ε〉〈θ |).

(3.3)

The vibronic couplingHint has the formHint = V ′E(QθT1 + QεT2). The eigenstates
associated with both the orbital triplet and orbital doublet are necessarily vibronic in
character.

So far, it has been assumed that the titanium ions substitute for gallium atoms, and the
environment remains tetrahedral. However, the titanium and gallium atoms have different
sizes, so such substitutions, and also the presence of other impurities, inevitably imply that
the lattice will have internal strains. Thus a given titanium ion is unlikely to be at a site
which has true tetrahedral symmetry, and the question arises as to the relative importance of
the internal strains and their origins. In order to take strains into account, it is sufficient to
use equation (3.2) again but with the variablesQi having fixed values̄Qi which change from
site to site. Usually, it is not possible to predict which symmetries and magnitudes of strains
are active in a given system without reference to the experimental results. Nevertheless, it
is clear from our subsequent analysis of the uniaxial stress data for this system that such
terms must be added here.
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3.2. The effect of perturbations

It is usual to create an effective HamiltonianHeff to describe any perturbationV within
each set of vibronic states after JT effects viaHint have been considered. ThenHeff
may be obtained directly fromV by multiplying the various symmetry-adapted orbital
operators withinV by first-order reduction factors appropriate to that symmetry and adding
in appropriate second-order JT terms. The perturbations needed here to describe the
experimental results are the spin–orbit coupling, the ‘strain’-like terms and uniaxial stress.
We consider first the2T2 vibronic excited state and then the2E vibronic ground state.

3.2.1. The vibronic excited state.The effective Hamiltonian is given in general by

Heeff = H(1)−so +H(2)−so +Hestrain+Hestress (3.4)

whereH(1)−so andH(2)−so are due to the spin–orbit couplingλl ·S within the orbital triplet
where the first-order term is given by

H(1)−so = K(T1)λl · S (3.5)

with K(T1) = K in the notation used earlier. The value of the first-order reduction factor
K(T1) depends upon the nature and magnitude of the vibronic coupling. Neglecting the
constant term, the second-order JT contributions from spin–orbit coupling are often written
in the general form

H(2)−so = λ2[a(l · S)+ b(l · S)2+ c(EθESθ + ESε ESε )+ d(TyzSyz + TzxSzx + TxySxy)]
(3.6)

whereESθ etc is equal toEθ etc with thel-operators replaced byS-operators. The parameters
b, c andd also depend upon the nature and magnitude of the coupling. For example, their
values for a T⊗ e JT system are given in references [20] and [21] and for the T⊗ t2 and
T ⊗ (e+ t2) systems in references [22] and [23] respectively. However, the form (3.6) is
overspecified with parameters, as the individual terms have mixed symmetries. Thus here
we taked = 0. We note also that the term inc does not contribute, asS = 1

2 for a 2T2 term.
Furthermore, the spin–orbit coupling gives a term inl · S in both the first- and second-
order expressions and they thus will be combined together in the terma′(l ·S). (A second
second-order term should be added to (3.6) arising from the direct2E–2T2 coupling via the
spin–orbit interaction. However, the form for this is exactly the same as the second-order
JT contribution (3.6) but with smaller values for the coefficients. Thus henceforth we will
consider that such contributions are absorbed into (3.6).)

Further simplifications in the analysis can be made as we note that it is impossible to
obtain independent values for the parametersa′ andb for an ion such as Ti3+. (We note also
that a′ and b cannot be separated in intensity calculations which will be discussed later.)
Thus we use instead the observed zero-stress splitting of 3.3 cm−1 ([18] and shown here in
figure 4) for the excited2T2 vibronic state. We will denote this byE (=− 3[ 1

2a
′ − 1

4bλ
2]).

The remaining terms in the general effective Hamiltonian (3.4) areHestrain, which
represents the very small strain-like splitting of fixed magnitude observed experimentally,
andHestress, which is the perturbation to represent the applied uniaxial stress. (The labele

denotes the excited state.) The externally applied uniaxial stress will cause each impurity
ion to experience a strain which is superimposed on the random strains already present in
the crystal. The nature of the term ‘Hestrain’ in the effective Hamiltonian is not clear at
this stage. It could represent an internal ‘strain’ of fixed magnitude or the value of the true
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random strain at the peak of the strain distribution. All we know is that, in order to describe
the observed results, it is necessary to add the term

Hestrain= αl2z (3.7)

to the effective Hamiltonian, whereα is a parameter to be determined which describes the
observed zero-stress splittings.

The effect of a uniaxial stressσ along the〈001〉 axis can be described by the Hamiltonian
Hestressand becomes

He,〈001〉
stress = Aσ − ησ(3l2z − 2) (3.8)

whereA is the hydrostatic term andη is the tetragonal stress coefficient. (As the experiments
give transition and not absolute energies, we attribute the whole of the hydrostatic term to
the excited states.) The effect of a stress along〈111〉 can be described by the Hamiltonian

He,〈111〉
stress = Aσ +

2

3
√

3
γ σ [Tyz + Tzx + Txy ] (3.9)

where γ is the trigonal stress coefficient. For stress along〈110〉, the corresponding
Hamiltonian is given by

He,〈110〉
stress = Aσ + 1

2ησ(3l
2
z − 2)+

√
1
3γ σTxy (3.10)

where, in principle, the parametersη andγ should be exactly the same as those defined in
equations (3.8) and (3.9). (We note that both parameters have also absorbed the appropriate
JT reduction factors.)

3.2.2. The vibronic ground state.The ground state is simpler to model as spin–orbit
coupling has no matrix elements within an E orbital doublet and thus there is no equivalence
of (3.5) and (3.6) for this state. The effective random ‘strain’ is assumed to have a fixed
value as in the excited state and thus can be written as

Hgstrain= α′T1. (3.11)

For stress along〈001〉, we have

Hg,〈001〉
stress = 4σT1 (3.12)

and for stresses along〈111〉 and〈110〉, we have

Hg,〈111〉
stress = 0

Hg,〈110〉
stress = − 1

24σT1

(3.13)

respectively, whereα′ and4 are coefficients to be determined.

3.2.3. Second-order effects.In addition to the first-order terms given above, second-order
stress terms should also be considered. They are of three types; the first and probably most
important arises from stress along the〈111〉 or 〈110〉 axis which couples the2E ground
vibronic states to the excited vibronic2T2 state. (Stress along〈001〉 does not couple the
2E and 2T2 vibronic states and thus does not give any contribution.) The second type
of contribution originates from the JT effect itself and involves second-order JT reduction
factors involving the stress taken twice in a standard perturbation formalism and the third
type arise from quadratic coupling.

Contributions from the first type may be described by the general Hamiltonian [24]

HE−T2
stress= W [Q̄4τx + Q̄5τy + Q̄6τz] (3.14)
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where

τx = LyLz + LzLy etc (3.15)

and whereLx etc is the orbital operator belonging tol = 2 etc,W is the effective coupling
constant andQ̄4 etc is the static displacement of theQ4 mode caused by the stress. As
noted earlier, spin–orbit coupling also couples together the2E and2T2 states separated by
1. On projecting both stress and spin–orbit coupling into the2E state, three second-order
contributions arise. One involves the spin–orbit coupling twice, but this causes no splittings
and can be dropped. The second involves the stress twice and the third contribution is the
cross term. On neglecting the second t2-type terms involvingQ̄7, Q̄8 and Q̄9 (because
they give no extra information), the second-order effective Hamiltonian to be included then
becomes

Hg(2)stress= d[SxQ̄4+ SyQ̄5+ SzQ̄6]T3+W2[(2Q̄2
6− Q̄2

4− Q̄2
5)T1+

√
3(Q̄2

4− Q̄2
5)T2]

+ 1
2e[Q̄

2
4+ Q̄2

5+ Q̄2
6]l(l + 1) (3.16)

where

d = −4Wλ/1

W2 = e = W 2/(21)

T3 = 1
2i[ |θ〉〈ε| − |ε〉〈θ |].

Further simplification occurs because, for a〈111〉 stress,Q̄4 = Q̄5 = Q̄6 = Q0, so the final
second-order effective Hamiltonian is

Hg(2)〈111〉 = d ′σ [Sx + Sy + Sz]T3+ e′σ 2 (3.17)

where the parametersd ′ ande′ absorb JT reduction and other conversion factors including
Q0 and the term inW2 drops out. We note the appearance of the term inσ 2 which does not
involve any orbital or spin operators. For a〈110〉 stress,Q̄4 = Q̄5 = 0 andQ̄6 = 3Q0/2
and the effective Hamiltonian is

Hg〈110〉 = 3d ′σSzT3/2+ 3e′σ 2/4+ 9W ′2σ
2T1/2. (3.18)

A similar procedure must be adopted for the orbital triplet. Thus the additional second-order
contribution to the final effective Hamiltonian is

He(2)〈111〉 = G1σ
2+G2σ

2(Tyz + Tzx + Txy)
+ G3σ [(l · s)(Tyz + Tzx + Txy)+ (Tyz + Tzx + Txy)(l · S)] (3.19)

where the parametersG1, G2 andG3 include JT reduction and other conversion factors.
(Note that those from the spin–orbit coupling taken twice have already been given in (3.6).)
For the〈110〉 stress, a similar result is obtained, namely

He(2)〈110〉 = 3
4G
′
1σ

2+ 3G3σ [(l · s)Txy + Txy(l · S)]/2− 3G1σ
2Eθ/2 (3.20)

whereG′1 is another parameter.
As mentioned above, the second type of second-order contributions arise entirely from

the JT effect. Details of this theory and the results obtained for an orbital triplet are given in
[25] and for an orbital doublet in [26]. The additional non-zero Hamiltonians to be added,
in an obvious notation, may be summarized as follows:

(i) for stress along〈001〉,
H(2)g,〈001〉

stress = −42σ
2T1

H(2)e,〈001〉
stress = 1

4[3ξ1l(l + 1)− 2ξ2Eθ ]σ
2

(3.21a)
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(ii) for stress along〈110〉,
H(2)e,〈110〉

stress = − 3
4ζ1Txyσ

2 (3.21b)

where42, ξ1, ξ2 andζ1 are parameters. There are also second-order JT contributions from
the 〈111〉 stress but these contributions may be absorbed into (3.17) and (3.19) by changing
the definitions of the parameters. (We neglect the corresponding second-order contributions
from ‘strain’.)

The third type of contribution arise from quadratic and bi-linear couplings in the
basic JT system. Many of the corresponding terms have the same form as those already
introduced (and are responsible for the differences between what would otherwise be
identical parameters) but there are, in addition, two terms which were not included
previously in the case of a〈110〉 stress. Thus to the above expressions given in (3.21)
we need to add

H(2)e
′,〈110〉

stress = ζ ′2Eθσ 2

H(2)g
′,〈110〉

stress = Z′T1σ
2

(3.22)

whereζ ′2 andZ′ are new parameters. These parameters are combined with those obtained
previously to generate the termsζ2Eθσ

2 andZT1σ
2 in the effective Hamiltonians for the

excited and ground states respectively, where

ζ2 = ζ ′2− 3G1/2

Z = Z′ + 9W ′2/2.
(3.23)

3.3. The transition intensities

In optical experiments, transitions occur between vibronic states. Although the absolute
intensities of the dominant electric-dipole transitions are difficult to calculate, because they
depend upon the amount of wave-function mixing with other free-ion and odd-parity states
and on the poorly known radial parts of the wave functions, the relative intensities can be
deduced accurately because they rely heavily on symmetry arguments. Thus the transition
intensities are proportional to the square of the matrix elements of the operatorH(p)

between the 3d components of the ground and excited states whereH(p) is given by

H(p) = ExTyz + EyTzx + EzTxy (3.24)

and whereEx etc are the components of the electric field (of symmetry T2 for a Td site) of
the radiation field.

Unfortunately, there are many modifications which should be made to the above intensity
calculations because strain effects make a significant contribution to the shape of the OA
spectrum. If we have a static situation in the strong-coupling limit, strain will shift the
relative energies of the wells in the potential energy surface. However, in order to build
up a line-shape for OA, ideally the strain distribution function should be incorporated.
However, this is very complicated and thus, in order to simplify the calculations, we neglect
the broadening effects from strain and concentrate on the position and sizes of the peaks
themselves. Also we assume that the peak corresponds to a fixed finite size of strain.

4. The results of computer fitting

The procedure adopted was to obtain values for the parameters from the peak energy
positions only as a function of applied stress for all stress directions, and to use these
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Table 2. Values obtained for the parameters. (Note thatG′ = G1 − e′ andG′′ = G′1 − e′′.)

Parameters P ‖[001] P ‖[111] P ‖[110]

α (cm−1) 0.57 0.57 0.57
α′ (cm−1) −0.4 −0.4 −0.4
4 (cm−1 MPa−1) −0.152 −0.152
η (cm−1 MPa−1) 6.19× 10−2 6.19× 10−2

A (cm−1 MPa−1) 1.17× 10−2 1.17× 10−2 1.17× 10−2

γ (cm−1 MPa−1) −5.63× 10−2 −5.63× 10−2

d ′ (cm−1 MPa−1) 1.57× 10−2 1.57× 10−2

G3 (cm−1 MPa−1) 6.73× 10−4 6.73× 10−4

ξ1 (cm−1 MPa−2) −5.65× 10−5 ∗
ξ2 (cm−1 MPa−2) 5.80× 10−4

G′ (cm−1 MPa−2) −1.33× 10−4 ∗
G2 (cm−1 MPa−2) 2.50× 10−5

G′′ (cm−1 MPa−2) −1.69× 10−4

ζ1 (cm−1 MPa−2) 1.12× 10−5

ζ2 (cm−1 MPa−2) −1.89× 10−5

Z (cm−1 MPa−2) −7.93× 10−5

42 (cm−1 MPa−2) 1.46× 10−5 1.46× 10−5

∗ The parameter has some contribution in the direction, but its effect is combined into other
parameters.

values to predict the intensities of the various theoretical peaks. The quality of a given fit
was therefore judged by comparing the calculated peak positions and the predicted intensities
with the corresponding experimental values as given in figures 1–3 and 5–7 and summarized
in table 1.

4.1. The values of the parameters

In principle, the energy levels for the Ti3+ ion are obtained directly fromHeeff andHgeff with
substitution of the appropriate spin–orbit coupling, strain and all of the stress Hamiltonians.
In general, the energy levels are split in the schematic way shown in figure 4 but the
identification of an observed peak with a given transition is not always obvious and part of
the problem is to correlate the two in a consistent way.

In order to obtain an initial fit, the data were divided into four sets, all in zero magnetic
field, namely the zero-stress spectrum and the spectra forσ along 〈001〉, 〈111〉 and 〈110〉
successively. It was found that some parameters were much more precisely determined
from one set of data than from other sets. Consequently, numerous computer fits were
undertaken using various combinations of the four sets of data and by a variety of computer
routines to produce a self-consistent set of transition energies and relative intensities using
the theory outlined in section 3 and parameter values for each particular combination of data.
These procedures proved unreliable due to the multi-dimensional character of the problem.
Finally, an alternative procedure was adopted in which the zero-order (i.e. involvingα and
α′) and linear stress terms only (i.e. those involving the parametersd ′, 4, η, A andγ ) were
used in a hands-on best fit to all of the stress data. (It should be noted that the sign of the
ground-state parameter4 was determined unambiguously by comparing the calculated and
observed intensities.) Then the remaining first-order parameterG3 and the second-order
parametersG′ (=G1− e′), G′′ (=G′1− e′′), 42, ξ1, ξ2, ζ1, ζ2 andZ were added and the fit
was improved with the former first-order parameters remaining unchanged. (Note also that
only the difference between the stress-independent parametersG1 ande′ could be obtained



Effects of stress on2E→ 2T2 absorption lines of GaP:Ti3+ 3381

and hence the introduction ofG′.) The best fit which was obtained by these processes is
shown in table 2 grouped together under a particular stress direction in which the parameter
has an effect.

Table 3. The calculated relative intensities forσ along〈001〉 for σ = 15 MPa.

Transitions 1 2 3 4 5 6

E‖σ 0 3.27 0 0 8.27 0
E⊥σ 1.5 1.09 2.36 1.72 0.409 0.646
Unpolarized 3.0 5.45 4.73 3.44 9.54 1.29

Table 4. The calculated relative intensities forσ along〈111〉 for σ = 100 MPa.

Transitions 1 2 3 4 5 6

E‖σ 4.26 12.52 10.906 3.095 1.207 0.473
E⊥σ 4.52 1.283 1.762 5.63 0.196 7.083
Unpolarized 4.123 6.574 6.334 4.362 7.301 3.77

The theoretical energy–stress curves calculated from these parameters are shown in
figures 5–7 together with the corresponding experimental points for the three stress
directions. Agreement between the calculated curves and experimental data is within the
experimental uncertainty. Peak intensities for specific values and directions of the uniaxial
stress have been calculated also and the results are given in tables 3 and 4. These results
are qualitatively in reasonable agreement with the experimental results (e.g. figures 2 and 3)
bearing in mind the simplifications used in the initial calculations through the total neglect
of the random strain distribution function in our calculations.

4.2. Discussion

We now examine in more detail the spectra shown in figures 2 and 3 concentrating on those
spectra for which polarized light was used. Forσ directed along〈001〉 and of magnitude
15 MPa andE along σ, figure 2(c) shows clearly that the strongest line is line 5 and
that line 2 is the next strongest. ForE perpendicular toσ, lines 5 and 6 are clearly the
weakest (figure 2(b)), line 1 is stronger than line 2 and line 3 is stronger than line 4.
However, it is more difficult to compare lines 1 and 3 because of their different widths.
In principle, we need to calculate the area of the absorption and not just the peak height
and this involves an estimate of the position of the base-line. When such an analysis is
undertaken, we see experimentally that the strongest line is line 3. Thus, in all cases, the
theoretical intensities given in table 3 are in general agreement with the experimental values.
Very similar comments can be made for the results obtained forP along 〈111〉 and along
〈110〉. Details are given in Al-Shaikh [27]. In all cases it appears that the calculated and
experimental intensities are in reasonable agreement with one another.

Despite the approximations involved in calculating the various intensities of the lines,
the theoretical intensities follow closely those seen in the experiments in all cases where
the spectra are well defined, both for different values ofσ and for differing geometries,
and that the revised energy level scheme of figure 4 adequately explains all of the stress
data. It is also clear that the parameter values satisfy the requirement that first-order terms
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are significantly larger than second-order terms with the one exception of the spin–orbit
coupling/stress term involvingd ′. This latter result is expected because the spin–orbit
coupling is larger than the effects of stress.

Figure 9. Photoluminescence spectra of GaP:Ti3+ measured at
T = 2 K with the magnetic fieldB along the〈001〉 direction.
(a) B = 0, (b) B = 3 T, (c) B = 6 T, (d) B = 9.3 T (after
[18]).

5. Zeeman effect results reinterpreted with the Jahn–Teller model

5.1. Summary of the Zeeman data

The lines at 4873.0 cm−1 and 4876.3 cm−1 in GaP:Ti3+ were also observed previously in
PL experiments [17]. Zeeman effect experiments on these samples were reported earlier
[18] using magnetic fieldsB up to 9.3 T. Figure 9 gives the PL spectrum showing the three
main peaks labelled P, Q and R for four values of a magnetic fieldB along〈001〉. Figure
10 shows the Zeeman splittings as a function ofB directed along〈001〉, 〈111〉 and 〈110〉.
All of the measurements were carried out at 2 K. While the qualitative interpretation of the
results proposed in [18] remains correct (namely that the lines P and R are the transitions
from the lowest Zeeman level of the excited08(2T2) state to thems = − 1

2 andms = + 1
2

Zeeman levels of the08(2E) ground state), the details have to be reinterpreted starting from
the revised energy level scheme of figure 4 forσ = 0 andB = 0. In particular, the above
comment concerning the P and R lines is clearly correct as, at high magnetic fields and for
T = 2 K, only the lowest Zeeman level of the excited state is populated. Therefore, we
use the JT model developed in section 3 to describe the effect of a magnetic field on the
2E↔ 2T2 transitions.

5.2. The Zeeman effective Hamiltonians

For the vibronic excited state, including all first- and second-order JT contributions, the
extra terms arising from the magnetic fieldB generate the additional effective Hamiltonian

HeB = µB
[
B · (a′l+ 2S)+ e(B · S)+ 2c(EθE

SB
θ + EεESBε )

+ b[(l · S)(l ·B)+ (l ·B)(l · S)]] (5.1)
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Figure 10. Splittings and shifts of the photoluminescence lines due to the2T2→ 2E transitions
of Ti3+Ga in GaP with the magnetic fieldB applied along the〈001〉, 〈111〉 and 〈110〉 directions
measured atT = 2 K. The circles are the measured line positions with1E = 0 at 4873.0 cm−1

(after [18]). The curves are calculated with the parameters given in section 7; the numbers
indicate the transitions between the Zeeman levels according to the level scheme of figure 11.
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Figure 11. The schematic energy level pattern defining the Zeeman transitions.

whereµB is the Bohr magneton and where

ESBθ = 1
2[2BzSz −B · S] etc. (5.2)

The form of the above Hamiltonian closely resembles that of the spin–orbit coupling alone
(equation (3.6)).

For the vibronic ground state, the corresponding Hamiltonian is of the form

HgB = g‖µBBzSz + 1
2g⊥µB(B+S− + B−S+) (5.3)

whereg‖ andg⊥ are the effectiveg-values as the orbital contributions are very small. Using
the parameter values deduced above (table 2) together with the measuredg-values [10]

g‖ = g⊥ = 1.943± 0.003

from EPR experiments, the theoretical transitions can be computed directly for all values
of the magnetic field and compared directly with the experimental data shown in figure
10. For ease of reference, the predicted transitions will be labelled 1–12 according to the
scheme shown in figure 11. The label P corresponds to transitions 1, 2, 3, 4, 5 and 6, label
R to transitions 8, 10 and 12 and label Q to transitions 7, 9 and 11. Further calculations
have shown that the spectra are almost isotropic as the magnetic field is rotated about the
z-axis in agreement with experiment [18].

5.3. The transition probabilities

The transition probabilities have also been calculated by the same procedure as that used
previously. The only difference is that, in PL experiments, the effective temperature of the
excited states is uncertain. (It was also noted that the relative intensities were observed to be
power dependent). Thus the Boltzmann factor was included for transitions other than those
from the lowest level. The experimental results were complicated by the ‘hot’ components
interfering with ‘cold’ components which further obscured the picture.
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5.4. Discussion

Figures 10 clearly show that the original P, Q and R lines, such as those shown in figure 9,
are really the convolution of several components which form into these three sets. Further
calculations [28] show that the components have different intensities. Also, our model
retains the virtually field-independent nature of the P and Q lines noted first by Halliday
et al [18]. Our analysis has also shown that the separation into the various sites having
symmetry axesOx , Oy andOz as developed in [18] has much less importance in our revised
model. Instead, each main peak in the Zeeman spectra consists of contributions from all
Ti3+ ions.

6. Conclusions

The revised level scheme shown in figure 4 for zero stress and zero magnetic field together
with the effective Hamiltonians derived in Section 3 gives a good description of the new
uniaxial stress data for the GaP:Ti3+ system as described in section 2. The same model is
also shown to give a good description of published Zeeman data. This model represents
a complete revision of the scheme for the Ti3+ ion in GaP. It is also expected that the
GaAs:Ti3+ and InP:Ti3+ systems would behave in exactly the same way (with different
values for the parameters) but such an analysis falls outside the scope of the present paper
and equivalent experimental data would be required.

The GaP:Ti3+ system is of considerable interest from a theoretical point of view. First,
we note that we have needed to introduce some small ‘strain’-like splittings having a specific
magnitude in both the2E ground and2T2 excited states. The reason for this is unclear but
similar terms are needed in the case of Cr3+ impurities in GaP [28].

In addition to the understanding of these effective strains, this system is ideal in many
respects for the study of the nature of the vibronic couplings involved in the excited state.
There is no direct evidence from experiment that the orthorhombic T⊗ (e+ t2) JT effect
is operational unlike the case of the GaAs:Cr3+ system for which the angular dependence
of the EPR spectrum from the4T1 ground state in that system (GaAs:Cr3+) clearly showed
that the Cr3+ ion occupies a site with orthorhombic symmetry [29, 30]. The fact that the
GaP:Ti3+ system is affected by both e- and t2-type stresses is not in itself sufficient to
allow us to make the assumption that the system is an orthorhombic JT system. Instead,
the formalism above for the vibronic triplet encompasses coupling to the e and two t2

modes simultaneously. It does not assume that it is an E⊗ e or T⊗ (e+ 2t2) system. It
also includes the possibility of a mixed JT system in which there is approximately equal
coupling to both e and t2 modes but without the orthorhombic-type wells being involved
[31]. Further discussions and work on such a mixed system remain for future study.

Although Ti3+ initially appeared to be an ideal simple system to study, our analysis has
become very complicated on account of the necessity to involve many different perturbations
combined with JT effects for the GaP host. For example, it is impossible to deduce a
value for the first-order reduction factorK to replace the value of 0.12 quoted originally
in section 1 because the relevant parametera′ also contains inherently contributions from
second order. It is also virtually impossible to obtain values for many of the other basic
parameters from the results of table 2 because of the complicated way in which the various
perturbations enter the final result. However, the final values given in table 2 appear to
be self consistent with each other and fit in with expectations from the theory. This work
clearly emphasizes the care needed in the study and identification of defect impurities even
in cases which appear to be straightforward.
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